POMPE A PISTONI AD ASSE INCLINATO DOPPIA MANDATA

DOUBLE DELIVERY BENT

 AXIS PISTON PUMPS
CODICE FAMIGLIA
 FAMILY CODE

Flangia/Flange
Albero/Shaft Cilin./Displ.

604001

ISO14 8x32×36 see table

Fluido idraulico / Fluid	Minerale a sintetico compatibile con guamizioni: Mineral or symthetic compatible with the following seals: FKM, FPM, HNBR				
Viscosità cinematica consigliato Kinematic viscosity suggested	T media ambiente (C) Averoge ombient lemp. ('C)	<-40	$-40+10$	10+35	> 35
	VG ($\mathrm{CSt}=\mathrm{mm}^{2} / \mathrm{s}$)	16	22	32	46
Viscosita cinematica ottimale di esercizio Optimale kinemotic viscosity			$V G=10 \mathrm{cst}+100 \mathrm{cst}$		
Viscositá cinemotica max consentito all'oxviamento Max kinernatic viscosity suggested at the stort-up			$\mathrm{VG}=750 \mathrm{cst}$		
Pres. di aspirazione / Inlet pressure			$0.85+2$ bar assoluti/absolut		
Senso di rotazione / Pump rotation			Unidirezionale / Unidirectional		
Verificore che la pompo sio posizionato olmeno 100 mm sotto il livello minimo del serbatoio olio. Primo di avviore la pompa effettuare spurgo aria. Verify that pump is, at least, 100 mm under the minimum level of the tonk. Before starting the pump bleed the air.					

288

INGOMBRO/ DIMENSIONS $53+53 \quad 70+35$ $70+53$

[^0]
ESPLOSO/ SPARE PARTS

$$
\begin{gathered}
53+53 \quad 70+35 \\
70+53
\end{gathered}
$$

ESPLOSO/ SPARE PARTS
(18) 令

TWIN FLOW 76+76

TWIN FLOW 76+76				
$\mathbf{N}^{\text {o }}$	Codice / P. Number	Descrizione / Description		Q.
1	11500600135	Tappo cieco 1/2* DIN 908	Blank plug 1/2* DIN 908	1
2	11600910129	Rondella acciaio/gomma 1/2*	Copper washer 1/2"	1
3	50100001355	Anello seeger rinforzato AS 35×2.5 E.UNI 7436	Retaining ring AS 35×2.5 E.UNI 7436	1
4	50100002729	Anello elastico E-SB 72×2	Circlip E-SB 72x2	1
5	50100308202	Spina UNI 6364-A Ø8×20	Pin UNI 6364-A 08×20	1
6	50600012425	Guarnizione ORM 1240-25 HNBR	OR M 1240-25 HNBR	1
7	50600013137	Guarnizione OR 3137 HNBR	O-Ring 3137 HNBR	1
8	50600024272	Paraolio HNBR	Oil seal HNBR	1
9	51000200364	Cuscinetlo a rulli conici $35 \times 72 \times 28$ EUR 33207	Tapered roller bearing 35×72x28 EUR 33207	1
10	51000255115	Cuscinetto a rulli conici $55 \times 115 \times 34$ EUR. T7FC055	Tapered roller bearing $55 \times 115 \times 34$ EUR. T7FC055	1
11	51100200200	Bussola Øi 35	Bushing Øi 35	1
12	51700201047	Corpo anteriore	Front housing	1
13	52200500839	Albero	Shaft	1
14	52501100291	Corona dentata	Crown	1
15	52900700217	Rondella $45 \times 35 \times 0.1$	Washer 45 3 35 00.1	1
16	52900700226	Rondella $45 \times 35 \times 0.2$	Washer 45 $\times 35 \times 0.2$	1
17	52900701449	Rondella speciole	Special washer	1
18	53000400271	Anello distanziale cuscinetti	Bearing spacer ring	1
	50002997609	Gruppo posteriore BENT AXIS SX. TWINFLOW	LEFT Piston barrel assembly	
19	50002997618	Gruppo posteriore BENT AXIS DX. TWINFLOW	RIGHT Piston barrel assembly	1
20	50102300037	Fasce elastiche	Spring rings	21
21	53200500132	Pistone sferico 019	Piston	7
22	50102300046	Fasce elastiche	Spring rings	21
23	53200500310	Pistone sferico $\varnothing 15,5$	Piston	7
24	50100800063	Rosetta elastica \times M12 DIN 7980	Washer \times M12 DIN 7980	8
25	50101500028	Anello seeger RS 6 DIN6799	Retaining ring RS 6 DIN6799	1
26	50200500573	Vite TCE M 12x45 UNI 5931	Socket head capscrew M12×45 UNI 5931	4
27	50200500582	Vite TCE M 12x50 UNI 5931	Socket head capscrew M12x50 UNI 5931	4
28	50700000612	Guarnizione corpo	Gasket	1
29	51200500812	Molla di carico corpo cilindri	Spring	1
30	51300000011	Chiodino fissaggio torghetta	Plate nail	2
31	513	Targhetta completa	Plate	1
32	51700201958	Corpo intermedio	/nt. housing	1
33	50002916767	Gruppo cilindri sede pistoni	Piston barrel assembly	1
34	54200100171	Anello guida molla	Spring guide ring	1
35	54200100304	Perno guida molla	Shaft guide pin	1

Raccordi validi SOLO per TWINFLOW 76+76 / Fittings suitable for TWINFLOW 76+76 ONLY

Codice Code	\mathbf{D}	$\mathbf{D E}$	\mathbf{V}	Peso Weigth
	mm	mm	mm	Kg
15511200507	50	$60-63$	59	0,59
15511200516	50	$64-67$	59	0,6
15511200605	60	$68-73$	79	0,77
15511200632	63	$74-79$	79	0,8
15511200767	76	$86-91$	94	1

Codice Code	D	DE	Z	Peso Weigth
	mm	mm	mm	Kg
15511245639	63	74-79	163	1,75
15511245764	76	86-91	167	2,1

Codice Code	\mathbf{D}	DE	\mathbf{V}	\mathbf{Z}	Peso Weigth
	mm	mm	mm	mm	Kg
15511290634	63	$74-79$	103	139	1,9
15511290769	76	$86-91$	103	140	2,3

15511300408

Kit flangia foro filettato G1-1/2, per montaggio raccordi GOLD.
Flange kit G1-1/2 threaded hole, for mounting GOLD fittings.

Codice Code	F	D	DE	V	\mathbf{Z}	Peso Weigth
	150228	mm	mm	mm	mm	Kg
15510000592	G1-1/2	50	60-63	85	114	0,99
15510000609			64-67			1
15510000654		60	68-73	88	123	1,06

Codice Code	F	D	DE	Z	$\begin{array}{\|c\|} \hline \text { Peso } \\ \text { Weigth } \end{array}$
	150228	mm	mm	mm	K9
15509000540	G1-1/2	50	60-63	133	0,79
15509000559			64-67		0,82
15509000611		60	68-73	153	1

SCHEMA RICAMBI POMPE A PISTONI TWIN FLDW
TWIN FLDW PISTON PUMP SERIES SPARE PARTS

CARATTERISTICHE TECNICHE FUNZIONAMENTO TECHNICAL FEATURES	$53+53$	70+35	70+53	76+76
Cilindrata A / Displacement (cc/rev)	53	36.5	53	75.1
Cilindrata B / Displacement ($\mathrm{cc} / \mathrm{rev}$)	55	68.3	66.2	74.8
Pressione massima continua / Max. continuous pressure (bar)	350	350	300	300
Pressione massima picco / Max. peak pressure (bar)	400	400	350	350
Velocità massima a vuoto / Max. speed without load (rpm)	2550	2550	2550	2550
Velocità massima con uscita A e B in press. Max. speed with load on A and B outputs (*)	1800	1800	1650	1500
Velocità massima con 1 porta in press. Max. speed with load on 1 output only (*)	2100	2100	2100	2100
Potenza massima continua / Max. continuous power (kW)	111	108	98	110
Potenza massima intermittente / Max. intermittent power (kW)	127	123	114	129

Pressione massima continua	Max. continuous pressure	(100%)
Pressione massima di punta	Max. peak pressure	$(6 \mathrm{sec}$. max $)$

COPPIA TEORICA ASSORBITAM

La coppia assorbita dalla pompa deve essere calcolata come somma delle coppie necessarie per mandare in pressione le 2 mandate. The total torque absorbed by the pump is given by the sum of the torques necessary to give pressure to the pressure ports.

POTENZA TEORICA ASSORBITA

THEORETICAL POWER INPUT

La potenza totale è pari alla somma delle potenze richieste dai singoli utilizzi sulle 2 mandate.
The total power absorbed by the pump is given by the sum of the power required by the two pressure ports.

$$
P_{\text {TOT }}=P_{A}+P_{B}=\frac{\left(p_{A} \cdot Q_{A}+p_{B} \cdot Q_{B}\right)}{612} \quad \begin{aligned}
& P_{[k W]} \\
& Q_{[1 / \mathrm{min}]}^{[\text {bar }]}
\end{aligned}
$$

(*) Velocitá con tubo diam. interno $63 \mathrm{~mm}\left(2^{\prime \prime} 1 / 2\right)$ minimo Speed with pipe internal diameter $63 \mathrm{~mm}\left(2^{* 1} 1 / 2\right)$ minimum.
Pompa 53+53 e 70+35: con tubo diam. interno $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ velocita max. 1200 rpm .
Pump 53+53 and 70+35: with pipe internal diameter $50 \mathrm{~mm}\left(2^{*}\right)$
max. speed 1200 rpm .
Pompa $70+53$: solo con tubo diam. interno $63 \mathrm{~mm}\left(2^{\prime \prime} 1 / 2\right)$. Pump 70+53: only with pipe internal diamater $63 \mathrm{~mm}\left(2^{-1} 1 / 2\right)$.

PORTATA TEORICA / THEORETICAL FLOW

La portata della pompa è pari alla somma delle portate delle 2 mandate. The fotal pump flow is given by the sum of the flow of each pressure port.

SCELTA DEL TUBO DI ASPIRAZIONE HOW TO CHOOSE THE SUCTION PIPE SIZE			
Q Portata Flow	$\begin{aligned} & \text { Ointe } \\ & \text { Min } \end{aligned}$	min. tubo diam.	Velocità flusso Flow speed
1/min	mm	inch	(m / s)
30	32	$1{ }^{\prime \prime} 1 / 4$	0,62
40	32		0,83
50	38	1" 1/2	0,74
60	38		0,88
70	40	1"9/16	0,93
80	45	$1^{\prime \prime} 3 / 4$	0,84
90	45		0,94
100	50	2"	0,85
110	50		0,93
120	60	$2^{\prime \prime} 3 / 8$	0,71
130	60		0,77
140	60		0,83
160	63	$2^{\prime \prime} 1 / 2$	0,86
170	63		0,91
180	63		0,96

Per garantire forrette condizioni di aspirazione la velocità del flusso non deve superare $\mathrm{m} / \mathrm{sec}$. To ensure the proper suction pipe size the flow speed should not exceed $1 \mathrm{mt} / \mathrm{sec}$.
Kit guarnizioni / Seal Kit 10890353533

[^0]: * Per modificare il senso di rotazione della pompa, da rotazione DESTRA IN SINISTRA, O VICEVERSA, è necessario sostituire il corpo posteriore.
 *To change the pump rofation, the rear body must be replaced.

